Comment on Fermionic and Bosonic Pair-creation in an External Electric Field at Finite Temperature
نویسنده
چکیده
We show that contrary to the claim made by Hallin and Liljenberg in Phys. Rev. D52 1150,(1995), (hep-th/9412188) the thermal correction to the thermal decay or pair production rate for a system placed in a heat bath in the presence of an external electric field, is always nonzero in the finite as well as infinite time limit. Using the formalism outlined there, we reestimate the decay rate for different values of temperature, mass and time.We also try to identify the parameter ranges where the quantity of interest agrees with that computed previously, at high temperature (in the infinite time limit), from the imaginary part of the effective action using imaginary time and real time formalism of thermal field theory. We also point out that in the strictly infinite time limit, the correct decay rate as obtained from the work of Hallin et. al. tends to diverge.
منابع مشابه
Fermionic and bosonic pair creation in an external electric field at finite temperature using the functional Schrödinger representation.
We solve the time evolution of the density matrix both for fermions and bosons in the presence of a homogeneous but time dependent external electric field. The number of particles produced by the external field, as well as their distribution in momentum space is found for finite times. Furthermore, we calculate the probability of finding a given number of particles in the ensemble. In all cases...
متن کاملSupersymmetry and Electron-hole Excitations in Semiconductors at Finite Temperature
The fermionic and bosonic electron-hole low lying excitations in a semiconductor are analyzed at finite temperature in a unified way following Nambu’s quasi-supersymmetric approach for the BCS model of superconductivity. The effective lagrangian for the fermionic modes and for the bosonic low lying collective excitations in the semiconductor is no longer supersymmetric in a conventional finite ...
متن کاملBosonic analog of the Klein paradox
The standard Klein paradox describes how an incoming electron scatters off a supercritical electrostatic barrier that is so strong that it can generate electron-positron pairs. This fermionic system has been widely discussed in textbooks to illustrate some of the discrepancies between quantum mechanical and quantum field theoretical descriptions for the pair creation process. We compare the fer...
متن کاملF eb 1 99 9 Why T c is too high when antiferromagnetism is underestimated ? — An understanding based on the phase - string effect
It is natural for a Mott antiferromagnetism in RVB description to become a superconductor in doped metallic regime. But the issue of superconducting transition temperature is highly nontrivial, as the AF fluctuations in the form of RVB pair-breaking are crucial in determining the phase coherence of the superconductivity. Underestimated AF fluctuations in a fermionic RVB state are the essential ...
متن کاملUniversalities in ultracold reactions of alkali-metal polar molecules
We consider ultracold collisions of ground-state heteronuclear alkali-metal dimers that are susceptible to four-center chemical reactions 2AB → A2 + B2 even at submicrokelvin temperatures. These reactions depend strongly on species, temperature, electric field, and confinement in an optical lattice. We calculate ab initio van der Waals coefficients for these interactions and use a quantum forma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008